Structure-function study of maize ribosome-inactivating protein: implications for the internal inactivation region and the sole glutamate in the active site

نویسندگان

  • Amanda Nga-Sze Mak
  • Yuen-Ting Wong
  • Young-Jun An
  • Sun-Shin Cha
  • Kong-Hung Sze
  • Shannon Wing-Ngor Au
  • Kam-Bo Wong
  • Pang-Chui Shaw
چکیده

Maize ribosome-inactivating protein is classified as a class III or an atypical RNA N-glycosidase. It is synthesized as an inactive precursor with a 25-amino acid internal inactivation region, which is removed in the active form. As the first structural example of this class of proteins, crystals of the precursor and the active form were diffracted to 2.4 and 2.5 A, respectively. The two proteins are similar, with main chain root mean square deviation (RMSD) of 0.519. In the precursor, the inactivation region is found on the protein surface and consists of a flexible loop followed by a long alpha-helix. This region diminished both the interaction with ribosome and cytotoxicity, but not cellular uptake. Like bacterial ribosome-inactivating proteins, maize ribosome-inactivating protein does not have a back-up glutamate in the active site, which helps the protein to retain some activity if the catalytic glutamate is mutated. The structure reveals that the active site is too small to accommodate two glutamate residues. Our structure suggests that maize ribosome-inactivating protein may represent an intermediate product in the evolution of ribosome-inactivating proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of EnBase Fed-Batch Cultivation to Improve Soluble Fraction Ratio of α-Luffin Ribosome Inactivating Protein

Background: The increase of the protein expression via ribosomal manipulation is one of the suggested cellular mechanisms involved in EnBase fed-batch mode of cultivation. However, this system has not been implemented for cytotoxic proteins.Objectives: Here, the expression pattern of α-Luffin, a ribosome inactivation protein (RIP) with an innate toxicity,...

متن کامل

A switch-on mechanism to activate maize ribosome-inactivating protein for targeting HIV-infected cells

Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the α-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active he...

متن کامل

The Recombinant Maize Ribosome-Inactivating Protein Transiently Reduces Viral Load in SHIV89.6 Infected Chinese Rhesus Macaques

Ribosome inactivating proteins (RIPs) inhibit protein synthesis by depurinating the large ribosomal RNA and some are found to possess anti-human immunodeficiency virus (HIV) activity. Maize ribosome inactivating protein (RIP) has an internal inactivation loop which is proteolytically removed for full catalytic activity. Here, we showed that the recombinant active maize RIP protected chimeric si...

متن کامل

Maize Ribosome-Inactivating Protein Uses Lys158–Lys161 to Interact with Ribosomal Protein P2 and the Strength of Interaction Is Correlated to the Biological Activities

Ribosome-inactivating proteins (RIPs) inactivate prokaryotic or eukaryotic ribosomes by removing a single adenine in the large ribosomal RNA. Here we show maize RIP (MOD), an atypical RIP with an internal inactivation loop, interacts with the ribosomal stalk protein P2 via Lys158-Lys161, which is located in the N-terminal domain and at the base of its internal loop. Due to subtle differences in...

متن کامل

Energy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations

The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007